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A new and simple method of applying the idea of real space renormalization 
group theory to the analysis of Monte Carlo configurations is proposed and 
applied to the Glauber kinetic Ising model in two and three dimensions, and to 
the Kawasaki model in two dimensions. Our method, if correct, utilizes how the 
system approaches its equilibrium; in contrast to most other Monte Carlo 
investigations there is no need to wait until equilibrium is established. The 
renormalization analysis takes only a small fraction of the computer time 
needed to produce the Monte Carlo configurations, and the results are obtained 
as the system relaxes at T = T c, the critical temperature. The values obtained for 
the dynamical critical exponent, z, are 2.12 ( d = 2 )  and 2.11 (d=  3) for the 
Glauber model, the 3.90 for the two-dimensional Kawasaki model. These results 
are in good agreement with those obtained by other methods but with smaller 
error bars in three dimensions. 

KEY WORDS: Renormalization group; Monte Carlo; dynamic critical phe- 
nomena; Glauber and Kawasaki models; Ising model; finite-size scaling. 

1. INTRODUCTION 

The combination of renormalization group and Monte Carlo simulation 
was initiated by Ma, ~1) who in a prototype analysis was able to calculate 
static as well as dynamic critical exponents for the two-dimensional Ising 

1 Center for Polymer Studies, Boston University, Boston, Massachusetts 02215. 
2 Permanent address: Physics Department, St. Francis Xavier University, Antigonish, Nova 

Scotia B2G 1C0 Canada. 
3 Permanent address: Physics Department, University of the West Indies, Cave Hill, Barba- 

dos. 
4 Permanent address: Institut ffir Theoretische Physik, Universit/it, 5000 K61n 41, West 

Germany. 

1 
(3022-4715/83/1000-0001503.00/0 �9 1983 Plenum Publishing Corporation 



2 Jan, Moseley, and Stauffer 

model. The idea was enhanced by Swendsen, who obtained very accurate 
exponents for the static problem through a comparison of normal and 
renormalized correlation functions, which were calculated from equilibrium 
configurations generated by Monte Carlo simulations at the critical temper- 
ature. The dynamic counterpart to this method was formulated by To- 
bochnik et al. 0) and was used in the analysis of the two, (3'4) and three- 
dimensional (s) Glauber kinetic Ising model, as well as the Kawasaki kinetic 
Ising modeL (s) This method depends on matching the equilibrium thermo- 
dynamic averages obtained from the Monte Carlo configurations and from 
block spin configurations determined by renormalization; one then 
searches for times such that the time-dependent averages match. The 
analysis is complicated and required good equilibrium configurations; thus 
numerous Monte Carlo steps per spin are needed, and only rather small 
systems like 16 x 16 x 16 in Ref. 5 could be simulated. It is possible that 
the relatively small lattices considered lead to systematic errors due to 
boundary and finite size effects. We present below a new dynamical 
renormalization group which is easier for the computer, more straightfor- 
ward in the analysis, and allows the simulation of large systems like 
128 x 128 x 128 spins; moreover it works also for short times when the 
system is still relaxing toward equilibrium. 

In the next section we describe the method and present the theory. The 
results for the Glauber and Kawasaki models are presented in Section 3 
and these results are compared with those obtained from other methods. 

2. METHOD AND THEORY 

Consider the system in an initial state at t = 0 with all spins parallel: 
M(0) = 1. Through the standard Monte Carlo procedure (6) it is possible to 
follow the system's relaxation to equilibrium configurations; we choose as 
the temperature the critical temperature 5 of the model where the correlation 
length is infinite in an infinite system. The blocking procedure of renormal- 
ization group replaces a cell of b d neighboring spins (in a d-dimensional 
hypercubic lattice) by one renormalized spin whose sign is, in our case, 
determined by the majority of original spin orientations in the b a cell. Let t 
be the time (in Monte Carlo steps per spin) at which magnetization M of 
the original system reaches a given value M I, and let t b be the time the 
renormalized system needs to reach the same value M 1 for its renormalized 
magnetization (which is also unity at the beginning of the simulation). The 

s The method is dependent on an independent estimation of To, e.g., a Monte Carlo analysis 
or series expansion. An error in Tc will produce systematic errors in z. 
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dynamic scaling hypothesis asserts that these times are related by 

tb = bZt (1) 

where z = A / u  is the dynamical critical exponent we wish to calculate. 
Alternatively, we can compare the times at which renormalizations of the 
same original systems reach the same value M~ of their respective renormal- 
ized magnetizations. If these times and length rescaling factors are denoted 
as t b and b, or t b, and b', respectively, then 

t b /  t b, = ( b / b ')  z (2) 

The values of z determined in this way should be independent of the choice 
of the matching magnetization M~. Consider the simulation of a finite 
system (L • L • L) at the critical temperature by Monte Carlo methods, 
starting with all spins up. The magnetization approaches a metastable finite 
value of order L - P / "  due to the periodic boundary conditions and the finite 
size of the system. After a sufficiently long time in this metastable region, 
the magnetization changes in a relatively short period to zero and then to 
negative values. From then on it fluctuates in sign. The average time 
needed for the magnetization to change its sign for the first time is expected 
at the critical temperature T C to be proportional to the linear relaxation 
time, i.e., 

,rf c~ L z 

where ,rf is the flip time, i.e., the time needed for the first reversal of the 
magnetization after a start from a ground state configuration. 

A cell of b d spins is renormalized to one superspin. This superspin flips 
its orientation when the magnetization of the cell with b d spins changes its 
sign. Thus each superspin flips, on the average, after a time proportional to 
b z, if we identify b of the cell with the size L in the argument above and if b 
is sufficiently large. In this sense one Monte Carlo step for a system of 
superspins corresponds to about b z Monte Carlo steps for the original 
"primary" spins. The normal primary spins in a Monte Carlo simulation 
need a certain noncritical time in units of one Monte Carlo step per 
primary spin until one tenth of them are flipped (M = 0.8) from the initial 
"all up" state. This primary flip time does not depend critically on T -  T c 
or at T - -  Tc on the system size. The time taken for the primary system to 
reach a value of the magnetization of 0.8 implies that there should be a 
delay of a multiplicative factor of b z time units before the system of 
superspins reaches the same value of the renormalized magnetization. Thus 
we have 

t b = const �9 bZt (b  ~ ~ )  
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Thus a comparison of two different large cells b and b' gives 

tb ' -~7 

the central equation of this method. 
This argument can be formulated more quantitatively by defining 

Pb(t, T) as the probability that an Ising lattice with b d spins at temperature 
T in zero magnetic field has a negative magnetization, t Monte Carlo steps 
per spin after having started with all spins up. (Zero magnetization is 
counted as negative with probability 1/2 only.) Obviously, Pb(O, T ) =  0 
and Pb(m, T ) =  1/2; for intermediate time s, Pb increases monotonically 
with t. We are interested here only in the case T = T c . At this critical point, 
dynamical scaling suggests that Pb(t, Tc) is a scaling function of one 
variable only: 

Pb(t, Tc) = f ( t / b  z) ( t , b ~ )  

since only one time and one length dominate critical behavior. This 
assumption should be valid for all probabilities between zero and unity; 
since probabilities are normalized to unity there is no factor b -p/~ in the 
above scaling assumption. As long as the system is rather far away from 
equilibrium the probability Pb is very small or even exactly zero; only for 
time t where most of the samples lead to an equilibrium magnetization of 
nearly zero is the probability much larger and close to 1/2. 

In our renormalization approach we identify this lattice size b with the 
cell size b; thus the probability that the majority of spins within a b cell 
points down equals f ( t /bZ) .  The renormalized magnetization M b of the 
system of superspins determined by the majority within each cell is now 
given by Mb(t, Tc) = 1 - 2Pb(t, Tc) = 1 - 2 f ( t / b  z) for large b and t. There- 
fore to every number/z between 0 and 1 belongs one time t b (/z) = constl~ �9 
b z such that M~[tb(/z), Tc] =/z. And if we compare two different cell sizes b 
and b' we have to(~)/tb, (tO = (b /b ' )  ~, which is our basic result. 

This derivation makes clear that our method does not require to work 
with equilibrium magnetizations (/~ = 0). In principle it works for every 
positive/~. [The primary spins, however, have to be quite close to equilib- 
rium to give a renormalized magnetization M b different from unity for large 
b; in other words, we need t-~ oo if we want to apply the scaling function 
f ( t / b  z) for b---~ ~.]  On the other hand, P~ must not be defined as the 
probability to have a magnetization smaller than some positive/z' in our b 
cell; only/~' = 0 works. If one would take/x' = 0.8, for example, then only 
10% of the spins within one cell would have to flip in order to change the 
cell orientation. This condition is reached after about one Monte Carlo step 
per spin; thus this time, and the associated probability Pb, would not be 
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critical and would not obey the above scaling relationship. Therefore the 
usual majority rule ( / x ' =  O) is required; a smaller number  of votes, like 
10%, is not sufficient for a change in the orientation. 

In summary,  our derivation makes clear that we can work with 
nonequilibrium magnetizations (/~ > O) of our renormalized systems, pro- 
vided we use the proper majority rule ( / z ' =  O) within each cell for our 
renormalization. 

3. R E S U L T S  

In Table I we show, for illustration purposes, an example of a 
630 x 630 square Ising lattice, which is renormalized into a 210 x 210 
superlattice of cells; each of these cells contains nine original spins and 
thus b = 3. We replace each 3 x 3 cell by a single renormalized spin which 
is taken up as if at least five of the original spins are up; otherwise the 
superspin is taken as down ("majority rule"). The Monte Carlo simulation 
is always applied to the original spins, not the renormalized spins, to 
determine the interaction energies and thermal probabilities. Also, if we 
take b = 9, we determine the sign of the corresponding renormalized spin 
by the majority of all 81 spins in the 9 x 9 cell, not by the majority of the 
nine superspins of the previous 3 x 3 renormalization. In other words, our 
majority rule is based on direct, not on representative democracy. In the 
case of cells with an even number  of spins and in which there is no clear 

Table I. The Number t and t b of Monte 
Carlo Steps per Spin of the Normal 

and Renormalized System, Shown in 
the First and Second Column, Which 

Are Required for the Systems to Reach 
the Same Value Mj of the Magnetization 

Listed in the Third Column ~ 

t t b M 1 z 

3 27 0.840 2.00 
4 38 0.821 2.05 
5 47 0.807 2.00 
6 64 0.796 2.16 
7 74 0.787 2.15 
8 85 0.779 2.15 
9 92 0.773 2.12 

aA two-dimensional 3 x 3 cell is renormalized 
into one superspin. The dynamic exponent z is 
calculated as log(tb/0/log b. 
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majority we assign the renormalized state with probability 1/2, i.e., the 
state is determined by the "flip of a coin."  

The second column in Table I contains the number  of Monte Carlo 
steps per spin required in order that the renormalized system, with b -- 3, 
reach the same magnetization as the unrenormalized system at time t. For  
example, after a time of 27 the 3 • 3 cells gives us a magnetization of 0.840, 
which agrees with the magnetization of the unrenormalized system after 
only three Monte Carlo steps per spin. Therefore, t b = 27, t = 3, and thus 
z = 2 since 27 -- 3 z �9 3. (For smaller times like t -- 1 we find that z is small, 
approximately 1.5, and depends on t. Thus this estimate is unreliable.) Our 
two-dimensional data are based on 100 Monte Carlo steps per spin in a 
630 • 630 lattice, using the standard algorithm. (6) In Table II  we show the 
z obtained for various rescaling factors b and b', and averaged over suitable 
values for the matching magnetization M 1. (Also we averaged over 32 
different simulations.) The mean value of the z exponents in Table II  is 
2.12, with a statistical error of 0.06. 

Larger systems were simulated over longer times for three dimensions. 
Figure 1 shows our original and renormalized magnetizations, with b = 1, 2, 
4, 8, 16, and 32, calculated from a 128 • 128 simple cubic lattice. We made 
six simulations up to 100 Monte Carlo steps per spin, two up to 300, and, in 
addition, we have completed four runs up to t = 1000 for a 128 • 128 • 

Table II. Exponent 
Estimates for the 

Two-Dimensional z a 

b b' z 

1 3 2.09 
1 4 2.05 
1 5 2.05 
2 3 2.60 
2 4 2.36 
3 4 2.00 
3 6 2.04 
4 5 2.10 
4 8 2.03 
5 6 1.95 
6 7 2,06 

a Cells of size b • b and of 
size b ' •  b' are renormal- 
ized into one superspin  
each, and compared with 
each other. The exponent z 
is calculated as log(tb/tb, ) 
/log( b / b'). 
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Fig. 1. Variation of the original magnetization and of the renormalized magnetizations with 
time, i.e., with the number of Monte Carlo steps per spin in the original system. Because of our 
logarithmic time scale, the similarity assumption on which our approach is based means that 
these curves can be made to coincide by shifts to the right or left. The numbers on the data 
sets give b, the length rescaling factor. 

128 lattice. The results for times up to 500 confirm the values reported here. 
However, for t above 500 the magnetization decayed only very weakly with 
time; finite-size effects become more pronounced and thus the data are 
unreliable. Larger lattices seem necessary to get more reliable information 
for t of the order of 1000. One such Monte Carlo step per spin took 10.8 sec 
on our IBM 370//168 including the renormalization analysis. 6 Only 11% of 
the computer time and less than 2% of the memory were used for the 
renormalization part; the rest was spent with producing the configurations 
by multispin coding. (7) (The results for b = 2 were obtained by 20 runs on a 
64 • 64 x 64 lattice up to 100 Monte Carlo steps per spin.) Except for times 
larger than 100, the Monte Carlo error is of the order of the symbol size in 
our figure. 

Our renormalization method requires that the curves for different b in 
Fig. 1 can be made to coincide by a rescaling of the time, i.e., by a simple 

6 Calculations for larger lattices on a CDC Cyber 205 vector computer are planned by 
C. Kalle, Ref. 7. 



8 Jan, Moseley, and Stauffer 

Table III. Exponent Estimates for the Three-Dimensional z 

b' b: 1 2 4 8 16 

2 2.07 
4 2.20 2.36 
8 2.16 2.12 2.20 

16 2.17 2.11 2.04 2.20 
32 2.01 1.99 2.00 2.06 2.14 

aCells of size b 3 and of size b '3 are renormalized into one superspin 
each, and compared with each other. The exponent z is calculated as 
log( tb / tb,) /log( b / b'). 

shift to the right or left in our logarithmic plot. For longer times, the data 
for b = 1 cannot be made to match those for larger b; similarly but weaker, 
the same difficulty occurs with b = 2. But for b = 4 and larger cells, the 
different curves can be made to coincide approximately by such a time 
rescaling, as the reader may check by superimposing two copies of this 
figure. Thus, our real space renormalization is not exact for small cells, 
which is hardly surprising, (8) but works better for larger cells. And only for 
long times can we see the deviations for small cells. 

Table I I I  gives the resulting estimates for the three-dimensional z, with 
each single value having an error of the order 0.1. There seems to be a 
systematic trend toward smaller z if we compare two cells with drastically 
different b and b'. But renormalization is expected to work best for a 
constant ratio b/b' of order unity. Thus this systematic trend with varying 
bib' should not lead us to extrapolate z to values lower than those in the 
table. At fixed b/b', our Table I I I  gives no indication of a systematic trend 
with increasing b (in principle we are interested in the b---> ~ limit only). 
This answers one of the crucial questions left open by earlier real space 
renormalizations for much smaller systems; cell size effects in this type of 
renormalization seem to be quite small once b is at least 4. 

The average over all 15 estimates in Table I I I  is z = 2.12; it does not 
change if we omit the four values involving b = 1; and it shifts only to 
z = 2.11 if we also omit the three values with b = 2. The statistical error is 
about 0.03 in all three cases. Therefore, if we can trust our conclusion that 
no systematic trends with increasing b at constant bib' shift the asymptotic 
exponent away from our estimates, then 

z = 2.11 + 0.03 

seems a realistic estimate for three dimensions. 
We also made an analysis involving short times up to 100 Monte Carlo 

steps per spin, with a program similar to our two-dimensional analysis, for 
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60 • 60 • 60 lattices. The average of six different z estimates, involving 
pairs (b,b')= (1,3); (1,4); (1,5); (2,4); (3,6); and (4,8), was found to be 
2.07 + 0.03, giving more credence to the consistency of our method and 
indicating that good accuracy can be obtained already with systems of 
moderate size and shorter observation time. 

We now describe the application of this method to the two- 
dimensional Kawaski Ising model (1~ in which the order parameter, the 
magnetization, but not the energy, is conserved. In the usual Kawasaki 
model, relaxation is achieved by interchanging a random spin with one of 
its (randomly selected) nearest neighbors of opposite spin orientation, thus 
ensuring the conservation of the magnetization. The approach of this 
system to equilibrium at the critical temperature, To, is much slower than 
that of the Glauber model, in which neither the energy nor the order 
parameter is conserved. A consequence of this is that previous analyses of 
the Kawaski dynamical model by MCRG (5) have been restricted to very 
small system with the danger of unavoidable large finite size effects. The 
model, however, may be brought to equilibrium more rapidly by the 
inclusion of further neighbors in the exchange process. We refer to this 
system as the generalized Kawasaki model. We expect from general consid- 
erations that the dynamic critical properties of this system should be in the 
same universality class as the Kawasaki model and indeed, this has been 
confirmed by our results. The initial system comprised a random arrange- 
ment of spins in which the net magnetization was zero. In Table IV we 
show our results for a system of 300 x 300 spins both for the usual and the 
extended Kawasaki models. In each case the results can be determined 

Table IV, Exponent Estimates 
for the Two-Dimensional z 

b' b ~  3 4 

2 3.42 3.90 
3.71 4.32 

3 4.25 
3.82 

a Cells of size b X b  and  of size 
b ' x  b' are renormalized into one 
superspin each, and compared with 
each other. The exponent z is calcu- 
lated as log (tb/tb,)/log(b/b'). The 
upper values are calculated for the 
usual  Kawasak i  model,  and  the 
lower for the generalized model in- 
volving exchange between fifth near- 
est neighbors. 
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from only 1000 Monte Carlo steps per spin. The complete run took 70 min 
on an IBM 370/168 computer. 

4. CONCLUSION 

Our two-dimensional z = 2.12 ___ 0.06 (probable error not maximum 
error!) agrees reasonably with earlier estimates of 2.17 in Ref. 3 and 2.22 in 
Ref. 4 and is consistent with less accurate estimates from Monte Carlo 
simulations above (6A1) and at T c. Our three-dimensional z = 2.11 + 0.03 
agrees well with the Monte Carlo renormalization result z = 2.08 of Ref. 5 
though our estimate seems to be more accurate. It is also consistent with 
z = 2.17 + 0.06 obtained from Monte Carlo simulation above Tc using 
much more computer time(13) ; but it seems to be slightly higher and outside 
the range of z = 2.02 as found (14) by interpolation between two epsilon 
expansions. For the Kawasaki model we obtain a value of 3.9 + 0.1 which 
is somewhat higher than the expected result of 3.75, derived from the 
relation 

Z = 4 - ~ /  

as obtained by Halperin, Hohenberg and Ma. (15) We speculate that this 
may be due to the effects of finite system size which would tend to place 
the value of ~ between the mean field result of 0 and exact result of 0.25. It 
would be interesting to test this conjecture by examining larger systems 
with this method. 

In summary, our method requires a much simpler analysis than 
previous methods and thus allowed for the use of larger systems and a 
search for finite-size effects. The method is simple enough to consider the 
application to the evaluation of z for other systems. 
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